
-,

NASA Technical Memorandum 100478

t

I

IWCIRCUT FAULT INJECTOR
USER'S GUIDE

peter A Padilla

JUNE 1987

4 B A S A-TB- 100478) IN-CIIBCUII: 1 BULT IBlJBCTOB
CSEB'S GUXDE (P A S A) 24 p Arail: H I S HC

N87-27 9 10

A C 2 / H F A01 CSCL 09c
Unclas

G3/33 00932 17

.
II m

Fault injection experiments are performed as part of validation research of
fault tolerant computer systems. The fault injection experiment data provide
information on the system's hardware fault coverage, and on the overall fault
handling behavior of the total system. This information can be used for
reliability analysis and system modeling of the fault tolerant computer
system.

A fault injector system has been designed and developed to facilitate fault
injection experiments. The fault injector system, called In-Circuit Fault
Injector (ICFI), allows fault injections to be performed on electronic
systems without special test fixtures.
attached directly to dip clips which can be attached to the integrated
circuits on the system boards.
to inject stuck-at-one, stuck-at-zero, square wave and transient faults. For
stuck-at faults the injection time can be specified to be from 500
nanoseconds to 10.9 minutes. Faults injected on buffers, line drivers,
and/or bus transceivers must be limited to 30 seconds to assure the in-
circuit fault injection technique will not damage or destroy the device under
test.

The fault injector probes are

Once connected, the ICFI system can be used

The ICFI system is interfaced to a VAX-11/750 minicomputer. Software has
been developed in the VAX minicomputer to control the ICFI system remotely; -

This interface allows researchers to execute un-attended fault injection
experiments.

The control software, a device driver, was developed in VAX assembly
language.
and can be accessed through system services.
parameters and examples of the computer code required to access the device
driver are presented.

The device driver is an integral part of the VAX operating system
Detailed definitions of the

a

Also presented, is the connection procedure to be followed to connect the
ICFI system to a circuit and the front panel controls which allow manual
control of fault injections.

i

This document is a comprehensive user's guide for a fault injector system
used in the Avionics Integration Research Lab. (AIRLAB) for fault injection
experiments on a fault tolerant computer system test-bed.

Fault injection experiments are performed as part of validation research of
fault tolerant computer systems. The fault injection experiment data provide
information on the system's hardware fault coverage, and on the overall fault
handling behavior of the total system.
reliability analysis and system modeling of the fault tolerant computer
system.

This information can be used for

Past fault injector systems required boards with sockets so that the
integrated circuits (ICs) could be removed, and the fault injector connected
between the ICs and the board.
that could Se inserted on the board's sockets and that provide a socket for
the displaced IC. Drawbacks of this technique include:

This technique also requires special implants

A) high cost of building boards with sockets

B) implants add capacitance and inductance loading to the circuit
under test

C) implants have to be carefully designed and layed-out to minimize
cross-talk and high frequency feedthrough

D) cumbersome set-up procedure:

1. remove target board

2. remove target chip

3. connect implant to board

4. connect chip to implant

1

I 5. put board with implant back into the system

E) size of the implant makes it difficult to hold it in place.

The fault injector system described here, called In-Circuit Fault Injector
(ICFI), provides the capability of injecting faults in digital circuits
without the use of special test fixtures, e.g., board sockets.
system is connected to the target ICs through dip clips.
minimizes capacitive loading while avoiding inductive loading.
connection also avoids cross-talk or feedthrough by not being in series with
the system's signal path. During a fault injection, the ICFI hardware pulls
the system-under-test circuit nodes to a specified voltage level.
hardware and control/interface software provide an integrated system for the
development of application programs to automatically execute fault
injections.

The ICFI
This connection

The

The ICFI

There are certain precautions that must be taken with the in-circuit fault
injection technique which, if not taken, may damage or destroy a chip.
Specifically, the fault voltage should not be set outside the target device's
output voltage range, e.g. the fault voltage should be limited between +5 to
0 volts for "L devices.
technique is the fault duration limit that exists for line drivers, buffers,
and bus transceivers.
limited in duration to 30 seconds.

Another precaution that must be taken with this

Faults injected at the output of these devices must be

A VAX/VMS device driver to control the ICFI hardware was developed. Also,
a user interface to the device driver, written in PASCAL, was developed and
is described in reference 4.
to all the ICFI system capabilities and satisfies the requirements for most
experiments.
interface program, will have to develop their own user interface to the
device driver.

This interface provides a user friendly access

Experimenters with special needs, not addressed by the

This paper describes the device driver programming interface and the ICFI
hardware set-up necessary for automatic fault injections.

2 I -

The ICFI device driver was written in VAX macro and is installed at system
The device driver is an integral part of the VAX operating system start-up.

(in this case VMS) and can be accessed through VMS system services. The
system services can be accessed through any high level language or from VAX

macro assembly. VAX macro assembly was selected as the language for the
examples presented in this section.

It is not the intention of this paper to teach VAX macro assembly language
but to provide a guide on how to write application programs for the ICFI
system.
syntactically correct and familiarity with VAX macro is assumed.
detailed information on VAX macro, system services, and device drivers
consult Digital Equipment COrp. manuals, refs. 1, 2 & 3.

Examples are given on the required code to do this; the examples are
For

The first system service required to gain access to the ICFI device driver
This service requires the user to supply two is the $ASSIGN system service.

parameters, the name of a device to which an 1/0 channel is desired and a
location to receive the allocated channel number.
required is:

In general, the macro code

device: .ascid /device - name/
channel: .word 0

.entry example
$assign - s device,channel

The first line in the example above creates a descriptor, named "device",
that contains the device name. The second line reserves a memory location
named "channel" and initializes it to zero. The third line creates an entry
point to the executable program named "example" (where it starts execution
every time you call the program with the DCL command RUN). The fourth and
last line in the example is the assign system service which allocates an I/O
channel to the device specified in the first line in the example and stores
the channel number in the memory location identified by the "channel" label.
The "underscore" and the "s" attached to the assign keyword are required
(they indicate to the macro assembler that the stack should be used to pass
parameters).

.

3

There are three devices which are the front end (from the VAX side) of the
ICFI system. These devices are:

device physical name device function

A m 0 :
ISAO:
m 0 :

D/A converters
Digital outputs
16-bi t timer

Using the example above and the ICFI device.names we can develop an example
of the code to allocate an I/O channel to each device:

device 1: .ascid /AOAO:/
device-2 : .ascid /ISAO :/
device-3: .ascid /€#io:/
channeT 1: .word 0
channel-2: .word 0
channel-3: - .word 0

.entry example,^M<r2,r3,r4,r5>
$assign s device 1,channel 1
$assign-s device-2, channel-2
Sassign-s - device-3, - channel-3 -

The ^M<r2,r3,r4,r5> in the entry statement tells the program caller (usually
the operating system) to push r2,r3,r4,r5 on the stack when calling the
program (the caller must use the "CALL" assembly instruction) and to pop them
after the end of the program (by "RET" assembly instruction). Refer to
.ENTRY and .END macros in reference 1 and $EXIT system service in reference
2. The registers specified inside the brackets should be those used in the
program except for rO, rl, r12, or r13. This example is syntactically
correct.

After obtaining the 1/0 channels to these devices a second system service
(QIO system service) is required to tell the device driver what to do. This
system service is used several times to pass data to the driver. The driver
will use this data to setup the fault injector for an experiment.
of the code required for a QIO call to set-up the ICFI system is:

An example

efn = 0
io$ - da = ^xOOlE

Sqio - s efn,channel ,#io$ - da, , , , ~ l , ~ 2 , ~ 3 , ~ 4 ,p5

4

c

I

or
$qiow - s efn,channel,#io$ - da, , , ,Pl,P2,~3,~4,~5

where "efn" is a flag to be set after the QIO call completion (usually set to
zero); "channel" has been explained in the $assign system service example;
"io$ - da" is a function number used by the driver to determine what to do
(explained in more detail later); and "Pl" to "P5" are parameters (user
specified data).
number that follows is in hexadecimal format.
means that the system service will suspend the program's execution until the
QIO is finished.
execution asynchronously.
ref. 2.

The rcnxll in the "io$ da" assignment statement means the -
The "w" in the second QIO

In the first QIO, the process and the system continue
For details on the QIO system service refer to

As mentioned above there are three front end devices in the ICFI system,
which can be accessed using the I D channels previously allocated.
device has different functions to perform and the device driver (which
contains the control software for each device) most be told what function the
user wants performed.
(e.g., "io$ - da" in the QIO call above) and the channel number to the driver,
see figure 1.

Each

To do this, the user must pass the function code

-+ user + channel - vMS 4 device
add r e s s

function code device driver - device
Figure 1. Information flow-graph for correct user-to-device conununications.

The channel used in the QIO call determines the device to which the device
driver will talk.
driver code which will be executed.
and the channel, i.e., using a function code which specifies a function which
is not performed by the device specified by the channel, will CRASH THE
SYSTEM.
ICFI system devices.

The function code determines the parts of the device
Disagreement between the function code

Table 1 specifies the valid function codes for the three front end

5

1. - VAWD -ON XR ICFI E" W DEVICES

OOO6,6

device

Fault type and
set KWAO: timer

AOAO :

ISAO :

m 0 :

function code function

OOOD, 6 Define output probe

Reset I 00041 6

Oo0% 6 Fault type and
set hardware timers

The single valid function code (OOlE,,) for the D/A device "ACWO:", shown
in table 1,
validity of the P1, P2, and P3 parameters, shown in table 2. (NOTE: the P1,
P2, P3, P4, and P5 parameters for all the function codes are defined in
tables 2, 3a, 3b, and 4 with detailed explanations following in the text.)
Using these data the device driver sets the D/A's to the appropriate output
voltage level.

tells the device driver to execute the code that checks the

The first function code (OOOD,,) for the digital outputs device "ISAO:",
shown in table 1, enables one or two ICFI system output probes (specified by
P1 and P2 in table 3a) where a fault injection is desired.
function code (0004,,) forces the device driver to reset the ICFI system.
The third, and last, valid function code (OOOA,,) for this device defines
,through P1 and P2 (table 3b), the fault type (e.g., stuck-at-zero, stuck-at-
one, and others defined below) for the two output probes enabled, loads three
hardware timers with user defined values passed in P3, P4, and P5 (table 3b),
and starts the fault injection.

The second

The function code (0006,,) for the 16-bit timer device "KWAO:" also defines
the fault type for the two previously enabled output probes (table 4).
instead of the ICFI system hardware timers, it uses a separate 16-bit timer
which is loaded with data passed on P3 and p4 (table 4).
starts a fault injection.

But,

. This function code

6

As mentioned above, the QIO parameters P1 to P5 are user defined, within
the restrictions defined and explained in more detail below for each table 2
through 4.

2, - QIO "P" P m DEE'INITICWS FUR TBE D/A DEVICE

function code (device)
function

OOlE:,, (-0:)

Set D/A device

parameter definitions

~1 = V+ , logic one
voltage level (volts)

Floating point data

P2 = V- , logic zero
voltage level (volts)

Floating point data

(-15.0 < V+ 5 +15.0)

(-15.0 < V- < +15.0)

p3 = 16 words buffer
address (allocated by
user, for driver use
only 1

For the "set D/A device" function, V+ defines the voltage level used when
injecting a SAl fault (see also fig. 2).

be within the allowed voltage range of the technology used in the circuit
under test (CUT), e.g., TTL voltage range: +5 to 0 volts. (The user interface
program described in reference 4 limits these voltages to the TIZ voltage
range.)

V- defines the voltage level for
IL- L'lt: 3n". -- n C a r e mst takeii &fir,ing tilese ieiiels, L & q si,o-uid

7

TABLE 3A. - QIO "P" P m DEFINITIONS FUR THE DIGITAL Ovrpvrs DEVICE

function code (device)
function

OOOD, (ISAO:)

Define output probe

0004, (ISAO:)

Reset

parameter definitions

P1 = output probe
number (1 < P1 < 48
PI = 0 (no-outpit,
disable output)
Integer data format

P2 = output probe
number (1 < P2 < 48)
P2 is used-for double
fault injections only
P2 = 0 (no output,
disable output)
P2 must be zero when
injecting single faults
Integer data format

No parameters needed

For the "define output probe" function, the number of output probes is
between 1 and 48, inclusive.
two banks of 24 probes each, i.e., 1 - < bank #1 - < 24 , 25 - < bank #2 - < 48. For
double faults, assigning P1 to bank #1 and P2 to bank #2 allows the selection
of different fault types for P1 and P2, e.g., a SA1 could be injected at the
output probe defined in P1 and a SA0 at P2. when the first fault type (i.e.,
for P1) is a stuck-at, the selection for the second fault type (for P2) can
be a stuck-at ,transient, or square wave. When the first fault type selected
is a transient or a square wave, the second fault type selection is
restricted to a stuck-at or to a transient/square wave identical to the first
fault type selection. If both P1 and P2 are defined within the same output
probes bank number only one fault type can be defined for both, e.g., a SA1

at both P1 and P2.

The ICFI system output probes are divided in

38. - QIO nPn P- DEFINITIONS TBE D I G I S arrpvrS DEVI-

function code (device)
function

0004, (Ism:)

Fault typehrdware timers

parameter definitions

P1 = fault type number
fault type number:
1 - clear/no fault
2 - stuck-at-one (sA1)
3 - stuck-at-zero (S O)
4 - transient
5 - square wave
Integer data format

P2 = fault type number
(same as for P1)
P2 = 1 , for single
fault injections
Integer data format

P3 = value, in seconds,
to be loaded in T1
(see fig. 2 below)

or P3 = 0 (disable T1)
Floating point data

3003-9 - < P3 < 12.83-6

P4 = value, in seconds,
to be loaded in T2
(see fig. 2 below)

or P4 = 0 (disable T2)
Floating point data

3OOE-9 - < P4 < 12.8E-6

n C - ..-1..- 2 - -----A- c-' - V ~ ~ " ~ ; m . . -cIIIIIII-. -- - - - - -- --- ,
to be loaded in T3
(see fig. 2 below)

or P5 = 0 (disable T3)
Floating point data

300319 - < P5 < 3.27E-3

The fault types to be injected at the defined output probes are specified
in a QIO call with the "fault typehardware timers" function code.
double fault injections, if both output probe numbers are within one probe
bank, P1 defines the fault type that is injected at both probes.
output probe numbers correspond to different probe banks then P1 defines the
fault type that will be injected at the bank #1 output probe and P2 defines
the fault type for bank #2 output probe.

For

If the

In this QIO call, P3, P4, and P5

9

define fault times for fault types 4 (transient) and 5 (square wave).
times are shown in figure 2.

These

I <-TI-> I <----T2-> I <- TI----> I

I < T3 >I
Figure 2. Fault example: definitions of the ICFI hardware timers.

The "x" means normal operation of the circuit under test.

For the square wave and transient fault types T1 defines the duration for
which V+ output voltage level is injected. T2 is the duration for which V-
output voltage level is injected for the square wave fault type definition.
For the transient fault, T2 defines a duration for which no fault is
injected. T3 is the total fault injection duration.

TABLE 4. - QIO "P" P- DEFINITICNS PlaR 'JlE 16-BIT TIWER DEVICE

function code (device)
function

0006,, (m0:)

Fault type/l6-bit timer

parameter definitions

~1 = fault type number
fault type number:
1 - clear/no fault
2 - stuck-at-one (S A l)
3 - stuck-at-zero (SA0
Integer data format

P2 = fault type number
(same as for P1)
P2 = 1 , for single
fault injections
Integer data format

P3 = rate number to be
loaded in the m CSR
Rate number:
2 -> lMHz
4 -> 100 KHZ
6 -> 10 KHZ
8 -> 1 KHZ
IO -> 100 HZ
Integer data format

P4 = value to be loadec
in the KWA PRESET reg.
0 < P4 < 65535
To-obtain P4 :
T, = fault duration
desired (in seconds)
E = rate (see Gf the
frequencies above,
e.g., 100,000 Hz)
P4 = R(T,)
EXAMPLE :
R = 1000 Hz
T, = 1003-3 seconds
P4 = R(T,) = 100
Integer data format

The "fault type/l6-bit timer" function code specifies a fault injection
(SA1 or S O) with a duration controlled by a 16-bit timer .("KWAO:" device).
P1 and P2 for this function specify the fault type and are constrained by the
same restrictions described for P1 and P2 for the "fault typehardware
timers" function. An additional restriction for these two parameters is the

! 11

!

limited selection of fault types available, i.e., SA1 and SA0 faults only.
P3 for this function is a rate number which determines the rate at which the
16-bit timer will count.
are given in table 4.
ticks required at the frequency specified in P3 (see table 4 above for an
example) .

The rate numbers and the frequencies they specify
P4 specifies the fault duration by the number of clock

Having explained all the relevant information we are ready for an example
of the code required to inject one fault.

device 1: .ascid /AQAO:/
device-2: .ascid /ISAO:/
device-3: .ascid m O : /
channeT 1: .word 0
channel-2: .word 0
channel-3: - .word 0
io$ da = ^x001E
io$-reset = ^x0004
io$-p-obe = ^xOOOD
io$ fault = "xOOOA
io$-KW - fault = "~0006
V+ = "F5.0
V- = F̂O.o
S A l - 2
SA0 = 3
buffer: .blkw 16

.entry example,^M<r2,r3,r4,r5>
$assign s device 1,channel 1
$assign-s device-2, channel-2
$assign's device-3, channel-3
$qiow s-, channel-2, #io$ reset
$qimIs ,channel-l,#io$-da, , , ,Pl=V+ ,p2=#V- ,~3-#buffer
Sqiow-s , channel-2, - #io$grobe, , , ,~l=l, P2-#0

$qiow - s ,channel 2,#io$ fault,,,,Pl=SAl,P2=#l,P3=#"FO.O,-

{ add a wait loop here to wait the fault duration 1
P4=#^FO .n, PS=^Fn. 0

$qiw s ,channel-2,#io$ - - reset
$exi t-s -

or
$qim s efn,channel 3,#io$ KW fault,, , ,~l-SAl,P2-#l,P3=#8,P4=#100
$qim-s ,channel - 2 ,%io$ - reset-
$exi t-s -

The code shown above assigns channels to the three ICFI system front-end
devices. Then, it issues a QIO call to reset the ICFI system.
a precaution in case the system is in an unknown state (e.g., if left

!Ms is just

12

injecting a fault by a previous user).
voltage levels to +5 and 0 volts (T1z levels).
floating point data.
injected (in this case probe #l), a third QIO call with a function code of
io$grobe must be issued.
choices for the next QIO call.

The second QIO call sets the fault
The "AF" prefix denotes

To specify the output probe, where a fault is to be

After defining the output probe we have two

The first choice is to inject the fault using the ICFI system internal

If the fault type desired is either a SA1 (like in the
timers.
the only choice.
example code) or a S A O , this choice restricts the fault duration control to
software, i.e., the software has to wait for the duration desired and then
clear the fault injection (THE INTERNAL TIMERS T1, T2, AND T3 DO NOT CONTROL
THE TIMING FOR SAl OR SA0 SELECTIONS). To clear a fault a QIO call with the
io$ - fault function code must be issued after the fault duration time is up
(see table 3a).

If the desired fault type is either transient or square wave this is

If the fault duration desired is less than or equal to 3.27 msec. (the
maximum value for T3) a SAl or SA0 fault can be injected with the hardware
timers by using the square wave fault type and setting T1 (for SAO) or T2
(for SAl) to zero. The timer not set to zero (either T1 or T2) should be set
to its maximum value of 12.8 psec if the fault duration desired is greater
than this, or to the fault duration desired if less than 12.8 psec.
shccld & set +,D L!e fault &r&ior; desired;
injection for 2 msec is desired the timers should be set as follows:

T3
exaqle if 5 S?rA

T1 = 12.8 psec
T2 = 0
T3 = 2 msec.

If a SA1 for 10 psec is desired then the timers' setting should be:

T1 = 10 psec
T2 = 0
T3 = 10 psec.

Even while in this option the fault duration is controlled by hardware

13

timers, the software has to wait for the fault to finish before issuing a QIO
call to reset the ICFI system and exiting.
or a SA0 is larger than 3.27 msec then the SA1 or SO fault type has to be
used and the software has to wait for the desired duration before clearing
the fault.
longer than 3 msec) for stuck-at faults is the second choice for the fourth
QIO call.

If the fault duration for a SAl

A better way of controlling the fault duration (for durations

The second choice for the fourth QIO call in the example code is to use the
16-bit timer to control the stuck-at fault duration. The timer will
interrupt the cpu at the end of the count, thus causing the execution of the
ICFI system device driver, which will automatically disable the fault. With
the 16-bit timer, fault durations from 1 msec to 655.35 sec can be specified.
The lower limit is set by an interrupt latency time of, on average, 40 psec.
This time can not be guaranteed to always be around 40 psec, it will depend
on the number of users and on what is being run on the system. To maintain
the error in time to less than 10% a lower limit in the fault duration of 1
msec seems appropriate. More accuracy can be obtained if the desired fault
duration is compensated by the 40 psec average interrupt latency time. The
lower limit of 1 msec overlaps with the 3.27 msec limit of the internal
hardware timers, thus a continuous fault duration range of 500 nsec to 655
sec is available through internal/external hardware timers.

A QIO call to reset the ICFI system should be issued before exiting a
program developed for fault injection experiments.
reset the ICFI system and put it in a known "disable but ready" state.
Currently when a program finishes execution under VMS the device driver is
notified with a deassign channel system service call, to which the driver
responds by executing code to clear any fault presently enabled in the ICFI
system.
not disable the output probes.
from the ICFI hardware to the probes are not being actively driven (i.e.,
passive termination).
the lines by Electro-Magnetic Interference (EMI) will cause a undesired fault
to be injected.
all the output probes.

The reset QIO call will

This prevents users from leaving a fault injection enabled but does
When fault injections are disabled the lines

If the probes are not disabled any noise induced on

The reset QIO call clears all fault injections and disables

LIHITATIONS OF TEIE IN-CIRCUIT FAULT I " I o N -QUE

The ICFI system can perform fault injections on several integrated circuit
technologies, e.g. emitter coupled logic (ECL), TTL, complementary metal
oxide semiconductor (CMOS), and RS-232 drivers.
technologies are varied, as can be appreciated by the following list:

The voltage range of these

1. ECL (for the HDlOK series, ref. 5)

a. maximum logic "1" voltage = 0 V
minimum logic "1" voltage = -1.105 V

b. minimum logic "0" voltage = -2.0 V
maximum logic "0" voltage = -1.475 V

2. TTL (ref. 6)

a. maximum logic "1" voltage = +5.0 V
minimum logic "1" voltage = +2.0 V

b. minimum logic "0" voltage = 0 V
maximum logic "0" voltage = .8 V

a. maximum logic "1" voltage = +5 V
minimum logic "1" voltage = +3.5 V

b. minimum logic "0" voltage = 0 V

maximum logic "0" voltage = +l. 5 V

4. CMOS Cv,, = +10 V, ref. 7)

a. maximum logic "1" voltage = +10 V
minimum logic "1" voltage = +8.0 V

15

b. minimum logic "0" voltage = 0 V
maximum logic "0" voltage = +2.0 V

5. RS-232 drivers (ref. 8)

a. maximum logic "1" voltage = +12 V
minimum logic "1" voltage = +6 V

b. minimum logic "0" voltage = -12 V
maximum logic "0" voltage = -6 V .

To handle all the technologies mentioned above the ICFI system requires a
high output voltage range (k15 volts).
create problems if precautions are not taken.

This high output voltage range may

The output voltage levels specified in V+ and V- in the "set D/A device"
QIO call should not be larger than the maximum logic "1" voltage or less than
the minimum logic "0" voltage for the particular devices under test. If this
precaution is not taken, the devices under test will be damaged or destroyed.
The ICFI system allows the users to set V+ and V- to any value within the
output range.
correctly.

It is the user's responsibility to set these voltages

Another area of concern is the fault duration when injecting on devices
with high output current capabilities like line drivers, buffers, and bus
transceivers.
the output voltage selected. The device-under-test's output driving this
node will be subjected to a high magnitude current, the node forced response
current. This current increases the device's power dissipation. The high
power dissipation, if maintained over certain time interval, will increase
the device's temperature to levels which will destroy the device. To prevent
this, it is necessary to limit fault injections on these devices to a maximum
of 30 seconds.
exempt from this limitation.

The ICFI system injects faults by forcing a circuit node to

The current-limited output stages of the RS-232 drivers are

16

The ICFI system hardware front panel controls (see figure 3) allow limited
manual control of the fault injection process.
restricted to the selection or enabling of:

The manual control is

1. any of the first 8 output probes (maximum of 2 simultaneously
enabled probes)

2. W or SA0 fault injection on the enabled probes or

3. external signal control (W, S A O , or square wave fault types) of
the enabled probes.

The front panel switch settings determine the mode in which the ICFI system
will work.
line, relays, enables, complements, and pulses. The function of the power
button is obvious, when "on" it lights up and so does a set of LED's which
monitor the presence of all the voltage references and power supplies in the
ICFI hardware.
any one fails to light up it signals a failure of the respective power

These switches are (as labeled in the front panel) power, on/off

These LED's are labeled after the voltage they monitor and if

supply -

Figure 3. ICFI system front panel diagram.

The on/off line button setting determines the ICFI fault injection control
mode, automatic (from the VAX) or manual (front panel). If set on-line the
system can be controlled by software through the device driver interface (see
section I1) and the front panel s "Relays", "Enables", "Complements", and

17

(RECP) switches are disabled. If set off-line the front panel RECP
switches are enabled and the software cannot be used to enable output probes
or to inject a fault.
software in both on-line or off-line settings (see section 11).

The voltage levels V+ and V- have to be set through

With the RECP switches enabled it is possible to manually control a fault
The llrelays" switches labeled 1 through 8 enable the injection.

corresponding output probes.
"complements" switches are used to inject SA1 or SA0 faults in the enabled
output probes (see table 5).
(labeled INVALIDS in fig. 3) signal when an illegal combination of "enables",
"complements", and "pulses" switches has been set.
(labeled: IA, lB, 2A, and 2B) in each "enables", "complements", and "pulses"
group, of these four, only the ones labeled lllA" and "18" are used. The
switches labeled "2A" and "2B" are not functional. The order in which the
switches are set does not matter.
as soon as the last switch required is set "on".

The "enables" switches in conjunction with the

A pair of LED's below the RECP switches

There are four switches

The fault appears at the probes's output

As mentioned above an external input (TIZ compatible) is available on the
front panel (EXT CLK in fig. 3) to control fault injections on the enabled
probes.
input, each selectable by an appropriate combination of switches.
two possible fault types are SAl and SA0 (for the switch settings see table
5). In this mode a logic one in the external input causes a fault (SAl or
S A O) to be injected on the enabled probes. A logic zero clears the fault.
For the third fault type available, square wave, a logic one (logic zero) on
the external input injects a SA1 (S O) on the enabled probes. Note that a
SA1 (S O) fault is at V+ (V-) volts.

There are three possible fault types available with the external
The first

.

fault type

L
switches

enables complements pulses

SA0 I off
lA

off

on

off

off

SAl I On

1B

on

off

off

off

external
input(SA0)

external
input(SAl)

external
input

square wave

off

on

on

on

off -

on - off 1 on

F
lA
L
off

off

off

on
~

on

-
1B

off

off

-
-
-
on -
off -

on

(a) A switch is "on" in the "up" position.

Some applications of the manual fault injection capability are:

1) to test the probes (i.e., verify correct functionality)

7 1 tc injest cr.e =r fs:_;?ts a'l sde,=ted Iscati=ns t= \ - = E : ; q . C scii-e - I *

unusual behavior of the fault tolerant computer, e.g., the
computer fails to detect a fault injection.
be corroborated that the observed behavior is not caused by a
malfunction of the ICFI system.

By doing this it can

19

The ICFI system output probes connect directly to the CUT through a dip
clip.
module has 6 wires: V,, (red), V,, (black), and 4 probes (black, labeled with
the probe number).
chip (e.g., +5 volts for Tn chips) and V,,
ground in Tn logic).
system power on, the following procedure should be followed:

The output probes are grouped in modules of 4 probes each. Each

V,, has to be connected to the positive supply of the
to the negative supply (or

When connecting the probes to the CUT with the ICFI

1. make sure the ICFI system is disabled, i.e., is not currently
injecting a fault (if in manual control mode, make sure all
switches are set off

2. connect V,, (black wire, unnumbered) first

3. connect V,, (red wire) next

4. connect the probes to the desired pins.

1. vAx/vMs MACRO User's Guide
Digital Equipment Corporation, Maynard, MA

I C

' . 2. vAx/VMs System Services Reference Manual
Digital Equipment Corporation, Maynard, MA

3. Guide to Writing a Device Driver
Digital Equipment Corporation, Maynard, MA

4. C.R. Elks, D.F. Green, D.L. Paluuh: User's Guide to Programing Fault
Injection and Data Acquisition in the SIFT Environment.
1987.

NASA Tm-87638,

5. ECL Logic and Memory Data Book
HITACHI, Ltd., Tokyo, Japan

6. The 'ITL Data Book, Vol. 2, 1985
Texas Instruments, Inc., Dallas, Texas

7. CMOS Data Book, 1981
National Semiconductor Corp., Santa Clara, CA

8. IC Master, Vol. 11, 1986
Hearts Business Communications, Inc., Garden City, NY

21

Standard Bibliographic Page

I. Report No.
NASA TM-100478

2. Government Accession No.

In-Circuit Fault Injector User's Guide

17. Key Words (Suggested by Authors(s))

In-Circuit Fault Injector

'. Author(s)

Peter A . Padilla

18. Distribution Statement

Unclassified-Unlimited

Subject Category 33

1. Performing Organization Name and Address

19. Security Classif.(of this report) 20. Security Classif.(of this page)

1 Pa . .

NASA Langley Research Center
Hampton, VA 23665-5225

21. No. of Pages 22. Price

22 A0 2

2. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546-0001

5. Supplementary Notes

3. Recipient's Catalog No.

5. Report Date

June 1987
6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

505-66-21-07
11. Contract or Grant No.

13. Type of Report and Period Covered

Tec-
14. Sponsoring Agency Code

6. Abstract

A fault injector system, called in-circuit injector, was designed and
developed to facilitate fault injection experiments performed at
NASA-Langley's Avionics Integration Research Lab (AIRLAB).
Fault Injector (ICFI) allows fault injections to be performed on electronic
systems without special test fixtures, e.g., sockets.
stuck-at-zero, stuck-at-one, and transient fault models.

The ICFI system is interfaced to a VAX-11/750 minicomputer.
program has been developed in the VAX.
access the interface program is presented.
procedure to be followed to connect the ICFI system to a circuit under
test and the ICFI front panel controls which allow manual control of fault
injections.

The In-Circuit

The system supports

An interface
The computer code required to

Also presented, is the connection

NASA LanKley Form 83 (June 1985)

~

